Extinktionslernen ist stark abhängig vom den Kontexten, in denen Akquisition und Extinktion stattfanden, und es ist bekannt, dass der Hippokampus maßgeblich ist für die Kontext-Abhängigkeit. Es fehlt allerdings ein tiefes Verständnis der Lernmechanismen und neuronalen Grundlagen, die zur Entstehung der Kontext-Abhängigkeit führen. In diesem Teilprojekt werden computationale Modellierung und Robotik angewandt, um zu untersuchen, 1. was Lernsignale von kontextuellen Informationen unterscheidet, 2. was Extinktionslernen abhängiger vom Kontext macht als Akquisition und 3. warum der Hippokampus für die Kontext-Abhängigkeit erforderlich ist.
Leitfragen des Projekts A14:
Diekmann N, Vijayabaskaran S, Zeng X, Kappel D, Menezes MC, Cheng S (2023) CoBeL-RL: A neuroscience-oriented simulation framework for complex behavior and learning. Front Neuroinformatics 17:1134405. https://doi.org/10.3389/fninf.2023.1134405
Ghazinouri B, Cheng S (2025) The Cost of Behavioral Flexibility: Reversal Learning Driven by a Spiking Neural Network. In: From Animals to Animats 17 (Brock O, Krichmar J, eds), pp 39–50. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-71533-4_23
Kappel D, Cheng S (2025) Global remapping emerges as the mechanism for renewal of context-dependent behavior in a reinforcement learning model. Front Comput Neurosci 18:1462110. https://doi.org/10.3389/fncom.2024.1462110
Menezes M, Zeng X, Cheng S (2025) Revealing the mechanisms underlying latent learning with successor representations. bioRxiv:2025.03.01.640768. https://doi.org/10.1101/2025.03.01.640768
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S (2023) A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 152:105200. https://doi.org/10.1016/j.neubiorev.2023.105200
Pusch R, Packheiser J, Azizi AH, Sevincik CS, Rose J, Cheng S, Stüttgen MC, Güntürkün O (2023) Working memory performance is tied to stimulus complexity. Commun Biol 6:1–16. https://doi.org/10.1038/s42003-023-05486-7
Vijayabaskaran S, Cheng S (2022) Navigation task and action space drive the emergence of egocentric and allocentric spatial representations. PLOS Comput Biol 18:e1010320. https://doi.org/10.1371/journal.pcbi.1010320
Vijayabaskaran S, Cheng S (2024) Competition and Integration of Visual and Goal Vector Signals for Spatial Navigation bioRxiv:2024.05.14.594206. https://doi.org/10.1101/2024.05.14.594206
Walther T, Diekmann N, Vijayabaskaran S, Donoso JR, Manahan-Vaughan D, Wiskott L, Cheng S (2021) Contextdependent extinction learning emerging from raw sensory inputs: a reinforcement learning approach. Sci Rep 11:2713. https://doi.org/10.1038/s41598-021-81157-z
Zhao D, Zhang Z, Lu H, Cheng S, Si B, Feng X (2022) Learning Cognitive Map Representations for Navigation by Sensory–Motor Integration. IEEE Trans Cybern 52:508–521. https://doi.org/10.1109/TCYB.2020.2977999